Skip to main content

DGA map

DGA map

Consider the map f ⁣:S2n×S2nS4nf\colon S^{2n}\times S^{2n}\to S^{4n} obtained by collapsing nn-skeleton of S2n×S2nS^{2n}\times S^{2n} to a point. Its Sullivan representative can be defined as follows.

First we define Sullivan models of S4nS^{4n} and S2n×S2nS^{2n}\times S^{2n}. They can be taken as ((x,y),d)(\wedge(x,y), d) with dx=0dx=0 and dy=x2dy=x^2, and ((a1,b1,a2,b2),d)(\wedge(a_1, b_1, a_2, b_2), d) with dai=0da_i=0 and dbi=ai2db_i=a_i^2, respectively.

DGAlgebraMap.kt
val n = 1
val matrixSpace = SparseMatrixSpaceOverRational

// define a Sullivan model of the 4n-sphere
val sphereIndeterminateList = listOf(
Indeterminate("x", 4 * n),
Indeterminate("y", 8 * n - 1),
)
val sphere = FreeDGAlgebra.fromMap(matrixSpace, sphereIndeterminateList) { (x, y) ->
mapOf(y to x.pow(2))
}

// define a Sullivan model of the product of two 2n-spheres
val sphereProductIndeterminateList = listOf(
Indeterminate("a1", 2 * n),
Indeterminate("b1", 4 * n - 1),
Indeterminate("a2", 2 * n),
Indeterminate("b2", 4 * n - 1),
)
val sphereProduct = FreeDGAlgebra.fromMap(matrixSpace, sphereProductIndeterminateList) { (a1, b1, a2, b2) ->
mapOf(b1 to a1.pow(2), b2 to a2.pow(2))
}

Sullivan representative of the map ff is a DGA map φ ⁣:(x,y)(a1,b1,a2,b2)\varphi\colon\wedge(x,y)\to\wedge(a_1, b_1, a_2, b_2) given by φ(x)=a1a2\varphi(x)=a_1a_2 and φ(y)=a12b2\varphi(y)=a_1^2b_2. In kohomology, this can be defined and used as follows:

DGAlgebraMap.kt
val (x, y) = sphere.generatorList
val (a1, b1, a2, b2) = sphereProduct.generatorList
val valueList = sphereProduct.context.run {
listOf(a1 * a2, a1.pow(2) * b2)
}
val f = sphere.getDGAlgebraMap(sphereProduct, valueList)
sphere.context.run {
// This 'context' is necessary for pow(2) and cohomologyClass()
println(f(x)) // a1a2
println(f(x.pow(2))) // a1^2a2^2
println(f.inducedMapOnCohomology(x.cohomologyClass())) // [a1a2]
println(f.inducedMapOnCohomology(x.pow(2).cohomologyClass())) // 0
}